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ABSTRACT

The performance gap between Compute and Storage is fairly considerable. With multi-core
computing capabilities, CPUs have scaled with the proliferation of Big Data but storage still remains
the bottleneck. The physical media characteristics are mostly blamed for storage being slow, but
this is partially true. The full potential of storage device cannot be harnessed till all layers of
I/O hierarchy function efficiently. Despite advanced optimizations applied across various layers
along the odyssey of data access, the I/O stack still remains volatile. The problems associated due
to the inefficiencies in data management get amplified in multi-tasking Big Data shared resource
environments. Its clearly evident that, there is an urgent need to re-think and re-design the system
software to address the needs of Big Data.

Software defined storage (SDS) is the means of delivering storage services for a plethora of data
center applications and environments. Our effort is to deliver near-ideal performance of
storage systems, by identifying issues, designing, and, developing software defined stor-
age capabilities with minimal or no infrastructural change for Data Centers processing
Big Data. Thereby, making changes feasible. We do not intend to change application char-
acteristics or improve storage devices or network infrastructures, but only the way data is managed.
Therefore, this research aims to improve the layers along the odyssey of data access environment
by understanding the 1/O hierarchy and the application needs from storage.

Our contributions have been in three major fields, discussed as follows which are designed and
developed specifically to suit multi-tenant, multi-tasking shared Big Data environments.

1) Operating System optimizations, deals with optimizing the OS and extending its compe-
tency; 2) Multi-tier solutions focuses on systems design to incorporate heterogeneous tiers of

storage together coupled with value propositions of data being scattered over multiple devices;
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3) Workload specific optimizations are full-stack data center storage solutions designed and
developed to suit workload characteristics.

The Linux OS (host) block layer is the most critical part of the I/O hierarchy as it orchestrates
the I/O requests from different applications to the underlying storage. The key to the performance
of the block layer is the Block I/O scheduler, which is responsible for dividing the I/O bandwidth
amongst the contending processes as well as determines the order and size of requests sent to storage
device driver. Irrespective of the data center storage architecture (SAN, NAS, DAS), the final
interaction with the physical media is in blocks (sectors in HDD, page in SSD) and the functioning
of the block I/O scheduler is highly critical for system performance. Unfortunately, despite its
significance, the block layer, essentially the block 1/O scheduler hasnt evolved much to meet the
needs of Big Data. Due to contention amongst different processes submitting I/O to a storage device
and the working of the current I/O schedulers, the inherent sequentiality of MapReduce tasks is lost.
This contention causes unwanted phenomenon such as interleaving and/or multiplexing, thereby
adversely affecting system performance (CPU wait times, etc.) and increasing latency in disk based
(Hard Disk Drive HDDs) storage devices.

First, we develop solutions, BID-HDD, from the core of the operating system, i.e. block 1/O
scheduling scheme to avoid contentions which tries to maintain the sequentiality in I/O access in
order to provide performance isolation to each I/O submitting process and improve individual hard
disk drives (HDDs), the details are discussed in Chapter 3. Through trace driven simulation based
experiments with cloud emulating MapReduce benchmarks, we show the effectiveness of BID-HDD
which results in 28 to 52% lesser time for all I/O requests than the best performing Linux disk
schedulers. BID-HDD is essentially a contention avoidance technique which can be modeled to cater
different objective functions (storage media type, performance characteristics, etc.). The algorithms
developed can be applied to other fields of engineering and science which have time-varying nature

of incoming requests and scheduling of events is a challenge (which is the case most often).
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HDDs form the back-bone of storage. The physical limitations of HDDs have led to Data
Centers organize data in multiple heterogeneous tiers' of storage such as those having HDDs and
SSDs (Solid State Drives) coupled with workload-aware tiering® to achieve cost, performance and
capacity trade-offs have become extremely popular. Second, we manage multiple devices and
develop methodologies, BID-Hybrid, to automated tiering using the information obtained at the
block interface using SSDs for improving disk performance (discussed in Chapter 4). BID-Hybrid
exploits SSDs random performance to further avoiding contention at disk based storage (using BID).
The existing literature tiers based on heuristics or predictions (popularity, frequency, and deviation
of logical locations). This may or may not be beneficial and can causes unnecessary deportations
to SSD in skewed workload characteristics. BID-Hybrid is a deterministic approach. This enables
BID-Hybrid to make judicious decisions and provide a holistic approach to tiering using I/O data-
structure information (development of the concepts of packing fraction). In our work, we define
randomness of blocks usage based on profiling the processes and provide decision metrics based on
anticipation and I/O size, in-order to define the correct candidates for tiering. Those blocks are
offloaded to SSD which belong to a process causing interruptions (which create non-bulky 1/0s)
and, therefore giving BID-Hybrid the dynamic adaptability based on changing I/O patterns. We
demonstrate the effectiveness of BID-Hybrid by using our in-house developed system simulator,
with enhanced OS features (VFS and Hybrid-block layer) to realize multiple tiers of storage used
together. BID-Hybrid results in performance gain of 6 to 23% for MapReduce workloads when
compared to BID-HDD and 33 to 54% over best performing Linux scheduling scheme.

We believe that in a large scale shared production cluster, the issues associated due to data
management can be mitigated way higher in the hierarchy of the I/O path, even before requests
to data access are made. The current data management techniques fail to capture the syntax and
semantics of jobs and the associations of data in various stages of jobs. Moreover, they are mostly

reactive and/or based on heuristics or prediction, thereby adding uncertainty. The goals of current

1Storage media across all nodes with similar physical and I/O characteristics.
2Tiering refers to orchestrating data between heterogeneous tiers of storage by leveraging individual strengths of
each to maintain balance between Cost, Performance and Capacity.
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efforts have been to make read operations faster as they are believed to be the biggest bottleneck.
This problem gets amplified for chained applications which exhibit lineage, where intermediate data
during computation must be written and read back later on. Chained Jobs are a popular class of
applications that are executed on clusters. Essentially, the jobs are pipelined and the output of
a job forms the input (or a part of the input) of the next job. Such jobs are common in several
business and scientific applications. The inconsiderate placement of intermediate results (writes)
for reuse may affect the read performance adversely. Under this scenario, the gains derived by
deploying multiple tiers in storage can be nullified easily by improper replica allocations to tiers,
handling of memory resources, and avoidable data movement [Iliadis et al. (2015); Zaharia et al.
(2012); Li et al. (2014)]. Therefore, in such data processing pipelines, its imperative to capture
lineage or relationships across tasks and their dependency with data, i.e. data-task associations.
Lastly, we design and develop data management solutions for the complete data center ecosystem
using multiple tiers of storage for mitigating the impact of data-dependency in lineage class of
applications. LDM, our data management solution, is designed to cater to a class of applications
which exhibit lineage, i.e. the current writes are future reads. In such class of applications, slow
writes significantly hurt the over-all performance of jobs, i.e. current writes determine the fate
of next reads. The concepts developed can be extended to a wide variety of applications. LDM
amalgamates the information from the entire data center ecosystem, right from the application
code, to file system mappings, the compute and storage devices topology, etc. to make oracle-
like deterministic data management decisions. These policies include, Data Placement, Replica
Management, and Data Migration. With trace-driven experiments, LDM (Algorithms 4 and 5) is
able to achieve 29% to 52% reduction in over-all data center workload (lineage as well as other
concurrent non-lineage applications) execution time. We believe that LDM will have a huge impact
on the performance and resource management of data processing platforms. We discuss briefly the

contributions of LDM in workload specific optimization (refer Chapter 5).
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With theoretical and experimental evaluations, our host managed storage solutions, namely,
BID-HDD, BID-Hybrid, and LDM, fulfils our objective of narrowing the gap between what storage
is capable of delivering and what it actually delivers in a Big Data environment.

We conclude our contributions in Chapter 6 followed by brief discussions on the future direc-
tions of work in the field of Host Managed Storage Solutions for Big Data. In future, we
would like to further investigate and develop the field of “Data assisted systems engineering”.
Throughout this research, we have utilized the information gathered by various layers of the 1/O
hierarchy to develop storage solutions. Therefore, the data generated from the various components

of the system assist in making the performance of Big Data storage systems faster.

Our research would aid Data Centers to achieve their Service Level Agreements (SLAs) as well
as to keep the Total-Cost of Ownership (TCO) low. From the Green Computing perspective, our
solutions will decrease energy footprint, due to much reduced work to process data across all tiers

of computing, i.e. storage, compute (required on storage servers), and network.
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CHAPTER 1. THE PROBLEM

1.1 Introduction: Broader Issue

Figure 1.1 represents the progression of computation and storage devices (in terms of speed) over
time. Processors have consistently improved and scaled at a steady pace with CPUs processing data
at extremely high rates [Nanavati et al. (2015)]. While performance of storage devices remained
roughly unchanged for a long time due to physical limitations of mechanical drives. Recently,
there have been efforts to reduce the performance gap, right from innovations in the semiconductor
industry such as the development of solid state drives to re-inventing faster interconnects such as
PCle to replace the legacy SATA/SAS bus. Despite the best efforts, storage was, is and will (in
the foreseeable future) remain a bottleneck in the system.

A Xc
Compute

Speed

What Storage is capable

of deliverin,
N x5

Storage ¥

What Storage actually delivers

Our work is an effort to reduce Axgg

v

1960 . . . —_ . . . 2018
Time

Figure 1.1: Compute and Storage speed progression with time (not to scale).
It is clearly evident that the performance gap (Azcg) between compute and storage is still

fairly considerable. This results in a mismatch between the application needs from storage and

what storage can deliver. These two curves depict the ideal scenario, i.e. the storage devices deliver
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100% of what they are capable of, but practically it never happens. Therefore, actual performance
difference is much more, i.e. Azcgs + Azgg. The additional delay (Azgg) is attributed to what
the storage is capable of delivering and what storage actually delivers (represented by the red dot).

The physical media characteristics and interface technology are mostly blamed for storage be-
ing slow, but this is only partially true. The full potential of storage devices (or system) cannot
be harnessed till all layers of I/O hierarchy function efficiently. Despite advanced optimizations
applied across various layers along the odyssey of data access, the I/O stack still remains volatile.
There have been a plethora of solutions to reduce the performance difference, right from OS op-
timizations like caching, virtualization, pre-fetching, to partitioning of databases, etc., developed
to manage data. These solutions have proven to be beneficial for legacy applications with low re-
source footprint. All these assumptions appear to collapse in Data Centers experiencing Big Data
workloads. The problems associated due to the inefficiencies in data management get amplified in
multi-tasking, and shared Big Data environments. There is an urgent need to re-think and re-design

the system software to address the needs of Big Data.

Our effort is to deliver near-ideal performance of storage systems, i.e. reduction of
Azxggr, by identifying issues and designing storage solutions with minimal or no infras-

tructural change for Data Centers experiencing Big Data.

In the next section, we briefly discuss the problems associated to data management for Big

Data environments, followed by our contributions in Section 1.3.

1.2 Big Data: Associated Issues

Data is growing in an unprecedented rate along all dimensions. Three of the most important
V’s which create data-intensive workloads is shown in Figure 1.2 [Mishra et al. (2017)]. The
sudden spurt in data-driven sciences has put tremendous pressure on the system architecture which

was designed for legacy applications with low resource (namely, storage, network and compute)

www.manaraa.com



footprint. For example, to reduce additional seeks to storage, keeping the working set sizes of
application small was the key to caching and pre-fetching mechanisms, such that the data could
easily fit in RAM. Such techniques and assumptions are now being invalidated due to the current

working set sizes and the difficulty in profiling workloads [Harter et al. (2014)].

Volume

Data

Variety Velocity

Figure 1.2: Multi dimensional forms of data.

Data centers today cater to a wide diaspora of applications which process multiple data sets for
multiple jobs in a multi-user environment concurrently. They also deploy storage systems organized
in multiple heterogeneous tiers!, which is necessary to achieve cost-performance-capacity trade-off
[Zhou et al. (2016); Kakoulli and Herodotou (2017)]. Each application can have different syntax
and semantics, with varying I/O needs from storage. With highly sophisticated and optimized
data processing frameworks, such as Hadoop and Spark, applications are capable of processing
large amounts of data at the same time. Dedicating physical resources for every application is
not economically feasible [Krish et al. (2014a)]. In cloud environments, with the aid of server and
storage virtualization, multiple processes contend for the same physical resource (namely, compute,
network, and storage). This causes contentions. In-order to meet their service level agreements
(SLAs), cloud providers need to ensure performance isolation guarantees for every application.
With multi-core computing capabilities, though CPUs have scaled to accommodate the needs of

“Big Data”, but storage still remains a bottleneck.

!Storage media across all nodes with similar I/O characteristics form a tier.
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Given the operating ecosystem, the physical limitations of storage devices and the insatiable
needs of applications to process data, the storage layer and the I/O path need to be extremely
efficient in-order to minimize delay. The performance of storage devices depend on the order in
which the data is stored and accessed. This order is multiplexed due to interferences from other
contending applications. Therefore, in large scale distributed systems (“cloud”), data management
plays a vital role in processing and storing petabytes of data among hundreds of thousands of
storage devices [Zhou et al. (2016)]. Few changes in data-management with proliferation of Big
Data is inevitable:

1. The transition to Big Data was sudden and the system software stack was and is not prepared
to cope up with the needs of applications from storage. The techniques and schemes used by
traditional enterprise infrastructure are being invalidated in highly multiplexing environments such
as data centers experiencing Big Data.

2. The current data management techniques fail to capture the syntax and semantics of jobs and
the associations of data in various stages of jobs. Under this scenario, the gains derived by deploying
multiple tiers in storage can be nullified easily by improper replica allocations to tiers, handling
of memory resources, and avoidable data movement. The storage layers needs to be dynamically
adaptable to changing time-varying application 1/O characteristics.

3. The focus needs to be on Workload-aware tiering® coupled with fault-tolerance and data-center
topology-awareness to reduce the over-all resource and energy footprints.

4. With so many software and hardware designs, and devices being employed in the data processing
infrastructure, a lot of information is generated such as system utilization, device characterization,
etc. All such informations should be harnessed to understand the way applications will access
data. This could aid data management to dictate deterministic policies and pave the path towards
development of “Data assisted systems engineering”.

5. Therefore, the entire storage software stack needs to be re-designed with striping up of inefficient

layers along the odyssey of data access and adding of new features right from the data center design

2Tiering refers to orchestrating data between heterogeneous tiers of storage by leveraging individual strengths of
each to maintain balance between Cost, Performance and Capacity.
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to operating system kernel I/O sub-structures and network interfaces for matching the application
needs from storage with storage capabilities.

Our motivation is based on these assumptions and observations, i.e. the deficiencies of the
current storage systems to mitigate the impact of Big Data workloads. In the next section, we

briefly outline our contributions in the field.

1.3 Host Managed Storage Solutions: Our Contributions

Software defined storage (SDS) is the means of delivering storage services for a plethora of data
center applications and environments. Our major effort has been in developing software defined
storage capabilities to manage data with minimal costs and infrastructural changes, thereby making

any improvements feasible.
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Figure 1.3: Our Contributions in Host Managed Storage.

Our focus is to develop host managed storage solutions by understanding the I/O hierarchy
and the application needs from storage for narrowing the gap between what storage is capable of
delivering and what it actually delivers in a Big Data environment (refer to Figure 1.1). We do not

intend to change application characteristics or improve storage devices or network infrastructures,
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but only the way data is managed. Therefore, this research aims to improve the layers along
the odyssey of data access environment. Host Managed Storage solutions is a sub-set of software
defined solutions which deals with identifying issues, developing and designing software-based data-
management storage solutions in the host (operating) side with minimal or no changes to the
hardware infrastructure.

Figure 1.3 represents the different areas of research in Host Managed Storage and outlines our
contributions in the field. We have three major contributions as outlined below and described in
three chapters in this dissertation.

1) Operating System optimizations deal with optimizing the OS and extend its competency.
We develop solutions, BID-HDD, from the core of the operating system, i.e. a block 1/O schedul-
ing scheme to avoid contentions and improve individual storage device (Hard Disk Drives HDDs)
capabilities. The details are discussed in Chapter 3.

2) Multi-tier solutions focuses on systems design to incorporate heterogeneous tiers of storage
together coupled with value propositions of data being scattered over multiple devices.. We manage
multiple devices and develop methodologies, BID-Hybrid, to automate tiering utilizing the informa-
tion obtained at the block interface to use Solid State Drives SSDs for improving disk performance
(discussed in Chapter 4).

3) Workload specific optimizations are full-stack data center storage solutions designed and de-
veloped to suit workload characteristics.We design and develop data management solutions, LDM,
for the complete data center ecosystem using multiple tiers of storage to mitigate the impact of
data-dependency in lineage class of applications. LDM amalgamates the information from all the

strata, devices, and layers in the I/O path (refer to Chapter 5).

All these three categories impact and/or are dependent on each other and many solutions lie

in the common areas. Our contributions in each of these chapters are enumerated in the following

sections.
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1.3.1 Contention Avoidance: OS optimizations

The prime objective of the operating system is to manage data across the I/O hierarchy and
relegate the requests from the user-space (or applications) to the storage device. In cloud environ-
ments, with the aid of server and storage virtualization, multiple processes contend for the same
physical resource (namely, compute, network, and storage). This causes contentions. In-order to
meet their service level agreements (SLAs), cloud providers need to ensure performance isolation
gaurantees for every application. The performance of storage devices depend on the order in which
the data is stored and accessed. This order is multiplexed due to interferences from other contend-
ing applications. Therefore, in such systems, data management plays a vital role in processing and
storing petabytes of data among hundreds of thousands of storage devices. Therefore, optimizing
the operating system is extremely critical for the over-all system performance.

We enumerate our contributions in optimizing the operating system as follows.

e Identifying the major source of contention in the I/O subsystem, i.e. “request queue process-

ing” (refer to Appendix A).

The Linux OS (host) block layer is the most critical part of the I/O hierarchy, as it orchestrates
the I/O requests from different applications to the underlying storage. Unfortunately, despite
its significance, the block layer, essentially the block I/O scheduler has not evolved to meet

the needs of Big Data.

e Identification of the requirements of a block I/O scheduler suited for Big Data environments.

The data access time in HDDs is majorly governed by disk arm movements, which usually
occurs when data is not accessed sequentially. Big Data applications exhibit evident sequen-
tiality but due to the contentions amongst other I/O submitting applications, the I/O accesses
get multiplexed which leads to higher disk arm movements. The requirements are laid down

in Section 3.3.
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e We have developed and designed a contention avoidance scheme for disk based storage devices
known as “BID-HDD: Bulk I/O Dispatch” in the Linux block layer, specifically to suit multi-

tenant, multi-tasking and skewed shared Big Data deployments.

e BID-HDD extends the capabilities of the current block layer to adapt with changing Big Data

workloads.

The efficient pipelining of large data blocks groups from adjoining locations in the disk leads
to reduction in disk arm movements (leveraging sequentiality performance). The development
of staging queues as well as the scheduling algorithms (Algorithms 1 and 2) has enabled the
block layer to make judicious decisions of dispatching requests to the device driver. The
dynamic need-based anticipation time ensures performance isolation to each I/O contending

processing following system constraints without compromising the SLAs.

e We have designed and developed a System Simulator using Python v2.7.3 to replicate the

working of the System level components (Host OS, Storage devices, etc.).

We use the trace file (as discussed in Section 3.6.1) for application I/O submission order for
evaluating our system design. The OS simulator is designed to work right from the kernel I/0O
data-structures and development of these units. While the storage simulator is accurately
developed to emulate the working of the storage devices as per device characteristics and

specifications.

e Through trace driven simulation based experiments with cloud emulating MapReduce bench-
marks, we show the effectiveness of BID-HDD which results in 28 to 52% lesser time for all

I/0 requests than the best performing Linux disk schedulers.

BID-HDD is essentially a contention avoidance technique which can be modeled to cater different
objective functions (storage media type, performance characteristics, etc.). The algorithms devel-
oped can be applied to other fields of engineering and science which have time-varying nature of
incoming requests and scheduling of events is a challenge (which is the case most often). BID-HDD

and-the.-associated-details-are.discussed in Chapter 3.
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1.3.2 Contention Avoidance: Multi-tier solutions

Due to physical limitation of HDDs, there have been recent efforts to incorporate flash based
high-speed, non-volatile secondary memory devices, known as Storage Class Memories (SCMs) in
data centers. Despite superior random performance of SCMs (or SSDs) over HDDs, replacing disks
with SCMs completely for data center deployments does not seem to be economically feasible. With
recent developments in NVMe devices, with supporting infrastructure and virtualization techniques,
a hybrid approach of using heterogeneous tiers of storage together such as those having HDDs and
SSDs coupled with workload-aware tiering to balance cost, performance and capacity have become
increasingly popular.

Data centers consists of many tiers of storage devices. All storage devices of the same type form
a tier. For example, all HDDs across the data-center form the HDD tier and all SSD form SSD
tier, and similarly for other SCMs. Based on profiling of workloads, balanced utility value of data
usage, the data is managed between the tiers of storage for improved performance. Workload-aware
storage tiering, or simply tiering is the automatic classification of how data is managed between
heterogeneous tiers of storage in an enterprise data-center environment [Mishra and Somani (2017)].
It is vital to develop automated and dynamic tiering solutions to utilize all the tiers of storage.

Our contributions in multi-tier OS contention avoidance storage solutions are described below.

e We develop and design a hybrid scheme, BID-Hybrid, to exploit SCMs (SSDs) superior ran-
dom performance to further avoid contentions at disk based storage to suit such multi-tasking,
multi-user shared Big Data environments. BID-Hybrid aims to deliver the capability of dy-

namic and judicious automated tiering in the block layer as a SDS solution.

e BID-Hybrid lies in the “initial tier placement” class of problem in tiering. The main objective
function of “initial tier placement” problem is the balanced decision of which tier the data is

to be initially written in-order to reap the maximum performance benefits.
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e Contrary to the tiering approach of defining SSD candidates based on deviation of LBAs,
BID-Hybrid profiles process 1/O characteristics by utilizing dynamic anticipation and 1/0

packing of kernel data-structures.

e BID-Hybrid is able to efficiently offload non-bulky interruptions from HDD request queue to
SSD queue using BID-HDD for disk request processing and multi-q FIFO architecture for
SSD.

e We design the system architecture to support a “hybrid OS block layer” (see Section 4.4) and

develop system simulators to evaluate BID-Hybrid.

e BID-Hybrid results in performance gain of 6 to 23% for MapReduce workloads when compared
to BID-HDD and 33 to 54% over best performing Linux scheduling scheme. BID schemes as
a whole is aimed to avoid contentions for disk based storage I/Os following system constraints

without compromising SLAs.

BID-Hybrid (refer to Chapter 4) uses similar concepts of staging as BID-HDD. Due to the
staging capabilities in the Host (OS) block layer, bulkiness of processes can be calculated and
verified on-the fly in-order to avoid unnecessary deportations to SSD. The key idea is to offload
I/0 blocks belonging to non-bulky processes to SSD (managed by multi-q block layer architecture
[Bjorling et al. (2013)]) and the bulky I/Os to HDD (handled by BID-HDD). This serves multi-
fold: (1) maximal sequentiality in HDD is ensured, i.e “HDD request queue” is made free from
unnecessary contention and interruption causing blocks; (2) the future references to the non-bulky
blocks are prevented from causing contentions for HDD disk I/O, as the semantic blocks have a
high probability to appear in the same pattern. Therefore, BID-Hybrid aims to further reduce
contention (more than BID-HDD) at disk based storage by offloading interruption causing blocks

to SSD, while ensuring uninterrupted sequential access to HDDs.
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1.3.3 Workload Specific Optimizations: Exploring Lineage

Data centers today cater to a wide diaspora of applications which process multiple data sets for
multiple jobs in a multi-user environment concurrently. They also deploy storage systems organized
in multiple heterogeneous tiers, which is necessary to achieve cost-performance-capacity trade-off
[Mishra and Somani (2017); Iliadis et al. (2015); Kim et al. (2011)]. Dedicating physical resources
for every application is not economically feasible. Resource sharing causes contention affecting
the efficiency and performance [Mishra and Somani (2017); Mishra et al. (2016); Hindman et al.
(2011)]. Data are scattered over multiple files located at multiple storage nodes® and replicated for
performance, availability and reliability reasons.

We believe that in a large scale shared production cluster, the issues associated due to data
management can be mitigated at a much higher level in the hierarchy of the I/O path, even before
requests to data access are made. The current data management techniques fail to capture the
syntax and semantics of jobs and the associations of data in various stages of jobs. Moreover, they
are mostly reactive and/or based on heuristics or prediction, thereby adding uncertainty. Moreover,
the goals of current efforts have been to make read operations faster as they are believed to be
the biggest bottleneck. This problem gets amplified for chained applications which exhibit lineage,
where intermediate data during computation must be written and read back later on. For example,
Chained Jobs are a popular class of applications that are executed on clusters. Essentially, the jobs
are pipelined and the output of a job forms the input (or a part of the input) of the next job. Such
jobs are common in several business and scientific applications.

The inconsiderate placement of intermediate results (writes) for reuse may affect the read per-
formance adversely. It is now becoming clearer that dealing with large amounts of current “writes”,
which are future “reads” is equally important to achieve good performance. Under this scenario,
the gains derived by deploying multiple tiers in storage can be nullified easily by improper replica
allocations to tiers, handling of memory resources, and avoidable data movement [Iliadis et al.

(2015); Zaharia et al. (2012); Li et al. (2014)]. Therefore, in such data processing pipelines, it

3Storage refers to the overall data plane, whereas a storage node refers to a single physical device.
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is imperative to capture lineage or relationship across tasks and their dependency with data, i.e.
data-task associations.

LDM is designed to cater to a class of applications which exhibit lineage, i.e. the current
writes are future reads. In such class of applications, slow writes significantly hurt the over-all
performance of jobs, i.e. current writes determine the fate of next reads. The concepts developed
can be extended to a wide variety of applications. We discuss briefly the contributions of LDM in

workload specific optimization (refer to Chapter 5).

o We develop and design a novel framework, called LDM, to address the challenges in lineage-
aware data management to effectively utilize multi-tier storage hierarchy. LDM captures the
inherent lineage information and reduce the data movement via network by placing them
appropriately to enable maximal processing nearer to the storage locations as well as in

appropriate storage tiers.

e LDM amalgamates the information from the entire data center ecosystem, right from the
application code, to file system mappings, the compute and storage devices topology, etc. to

take oracle-like deterministic data management decisions.

e LDM captures the inherent data dependency by analyzing the metadata associated with
application code and extract semantic knowledge of the computational workflow logic coupled

with the file system information to build task and block graphs.

e We develop block-graphs, which uses file-system information about the block to device map-
pings to associate blocks of data with tasks (using task blocks). Block graphs are designed to
deterministically capture all the data block-task associations and data lineage across tasks.
LDM uses this knowledge to mitigate the impact of delays associated to writing and then

subsequently reading intermediate results.

e LDM utilizes all tiers of storage to reduce data access delays in conjunction with workload

aware tiering by orchestrating multiple data management features. LDM takes into account
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the storage device current and future utilization along with its characteristics and match them

to “lineage-quotient” of blocks to dictate policies.

e LDM performs Initial Data Placement, Replication Placement, and Data Migration tasks for
dependency mitigation which are described using Algorithm 4, 5 and 6, respectively. They
determine the storage device(s) to place the data and if, when, and where to move data blocks

dynamically.

e With trace-driven experiments, we show LDM (Algorithms 4, and 5) is able to achieve 29%

to 52% reduction in over-all data center workload execution time.

We believe that LDM will have a huge impact on the performance and resource management of
data processing platforms.

From the Green Computing perspective, our solution will decrease energy footprint, due to
much reduced work to process data across all tiers of computing, i.e. storage, compute (required

on storage servers), and network.

1.4 Dissertation Organization

In Chapter 1, we have briefly described the problems associated to storage and deficiency of
the traditional (current) system architecture to brave with the requirements of Big Data. This
is followed by the description of the problem and our major contributions in the field. Chapter
2 categorizes the relevant literature in our problem scope, and provides an overview of the work
done in developing these areas, namely, OS optimizations, Multi-tier OS solutions, and Workload
specific optimizations, respectively.

The next three chapters are organized based on our specific contributions. Chapter 3 describes
our novel contention avoidance technique, BID-HDD, which essentially is a block I/O scheduler for
disk based storage suited for multi-tenant, multi-user, and multi-tasking Big Data shared resource
environments. We discuss right from the details of the operating system basics and develop the

solution from the core to match the current application needs from storage. In Chapter 4, we
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discuss the working architecture of our novel multi-tier (HDDs and SCMs) OS contention avoidance
scheme, BID-Hybrid, which further reduces contentions for disk based storage devices using solid
state devices. Chapter 5 describes the working of our data management solution, LDM, designed
to cater a class of applications which exhibit lineage, i.e. the current writes are future reads. In
such class of applications, we mitigate the impact of slow writes which significantly hurt the over-all
performance of jobs, i.e. current writes determine the fate of next reads.

We conclude our research in Chapter 6, followed by brief discussions on the future directions of

work in the field of Host Managed Storage Solutions for Big Data.
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CHAPTER 2. LITERATURE REVIEW

The journey to store and utilize data from cave drawings to developments in exascale storage has
fueled various innovations over time. The main research focus for a long time has been in improving
physical media characteristics like increasing areal density of hard drives, read/write technology,
etc., semiconductor storage devices (SSDs, DVIMMs, RAMDisks, etc.), and their interconnects
(SAS, SATA, PCle, NVMe, FCoE etc.). The developments in the field of storage can be broadly
divided into application-space, networking and storage-devices. We limit our discussion to our

problem scope, i.e. Host Managed Storage Solutions for Big Data.

2.1 Our Problem scope

Our effort is to provide software defined storage capabilities by identifying and eliminating
the deficiencies along the software layers of the I/O path for data-centers experiencing Big Data
workloads. We have categorized the relevant literature according to the specific areas of our problem

scope, as shown in Table 2.1.

2.1.1 Block I/O Optimizations

In this section, we discuss the developments in the block layer, concentrating mostly on 1/0O
Scheduling. I/O Scheduling has been around since the beginning of disk drives [Ruemmler and
Wilkes (1994)]. We limit our discussion to those approaches which are relevant to recent devel-
opments. Despite advanced optimizations applied across various layers along the odyssey of data
access, the Linux I/O stack still remains volatile. The block layer hasn’t evolved [Bjorling et al.
(2013); Riska et al. (2007)] to cater the requirements of Big Data. Riska et al. (2007) evaluates the
effectiveness of block I/O optimization at the application layer by quantifying the effect of request

merging and reordering at different I/O layers (File System, Block Layer, Device driver) have on
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overall system performance. One of the major findings were in establishing relationships between
performance and block I/0 scheduler. Our work on BID-HDD is an effort in this domain especially
for rotation based recording drives. BID is essentially a contention avoidance technique which can
be modeled to cater different objective functions (storage media type, performance characteristics,
etc.).

Axboe (2004) provides a brief overview of the Linux block layer, basic I/O units, request queue
processing, etc. Ibrahim et al. (2011) proposes a framework which studies the VM interference in
Hadoop virtualized environments with the execution of single MapReduce job with several disk pair
schedulers. It divides the MapReduce job into phases (i.e. Map, Shuffle, and Reduce) and executes
series of experiments using a heuristic to choose a disk pair scheduler for the next phase in a VM
Environment. Bhadkamkar et al. (2009) is a self-optimizing HDD based solution which re-organizes
blocks in the block layer by forming sequences via calculating correlation amongst LBA (logical
block address) ranges with connectivity based on frequency distribution and temporal locality. It
makes weighted graphs and relocation of blocks happens to most needed vertex first. The goal is
to service most requests from dedicated zones of a HDD.

Bjerling et al. (2013) is an important piece of work which extends the capabilities of the block
layer for utilizing internal parallelism of SSDs to enable fast computation for multi-core systems.
It proposes changes to the existing OS block layer with support for multiple software and hardware
queues for a single storage device. Multi-q involves a software queue per CPU core. Similar lock-
contention scheme can be used for BID, as it also involves multiple queues. Malladi et al. (2016)
mentions about NVMe I/O scheduling having separate 1/O queues for each core, therefore using
Multi-q concepts. In BID-Hybrid, we use Multi-q for serving I/Os in SSD as it would ensure
performance as well as allow proportional sharing.

Yi et al. (2017) is an SSD extension of CFQ scheduler in which each process has a FIFO
request queue and the I/O bandwidth is fairly distributed in round robin fashion. Park et al.
(2016) and Kim et al. (2016) propose to ensure diverse SLAs, including reservations, limitations,

and proportional sharing by their I/O Scheduling schemes in shared VM environment for SSDs.
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While Park et al. (2016) uses an opportunistic goal oriented block I/O scheduling algorithm, Kim
et al. (2016) proposes host level SSD I/O schedulers, which are extensions of state-of-the-art 1/0O
scheduling scheme CFQ. Wang et al. (2013) tries to utilize the parallelism in SSDs, by dividing the
entire SSD into sub-regions, each having a different queue for dispatching requests. Wang et al.
(2013) might be good in applications which have more random I/Os otherwise, leading to increasing

wait queues for popular sub-regions & bias in performance.

2.1.2 Multi-tier solutions

There is a huge industrial and academic focus to incorporate NVMe’s (SSDs) into data-centers,
with developments such as NVMe Express utilizing PCle bus technology and NVMe over RDMA
Fabrics for point-to-point interconnect [Nanavati et al. (2015); Malladi et al. (2016)]. Though hard
drives will not be replaced by NVMe devices (SSDs) in the near future, more prominently due to
SSD’s high TCO (Total Cost of Ownership- cost/GB, write amplification, lifespan) [Yang and Zhu
(2016Db)], lack of consistent software stack (fabrics, interface and media characteristics) as well as
non-uniform workload performance characteristics [Nanavati et al. (2015); Mittal and Vetter (2016);
Krish et al. (2016)]. A hybrid approach with heterogeneous tiers of storage such as those having
HDDs and SCMs coupled with workload aware tiering to balance cost, performance and capacity
have become increasingly popular [Zhou et al. (2016); Harter et al. (2014)]. Multi-tier storage
environment deal with how data is managed between heterogeneous tiers of storage in enterprise
data-center environment.

The underlying foundation of multi-tier storage has been adopted from the concepts of caching
mechanisms such as LRU, LFU, etc., as well as partitioning of databases. Partitioning of databases,
more specifically vertical partitioning has been an active field of research since the 70’s and 80’s
[Galaktionov et al. (2016); Li and Patel (2014)]. The key idea is to develop an optimization model to
satisfy one or more criteria to improve the I/O performance of databases. Partitioning of databases,
similar to physical design problems has been proven to be NP-Hard due to the estimation errors

in both system and workload parameters [Galaktionov et al. (2016); Li and Patel (2014); Agrawal
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et al. (2004)], therefore extensive work has been done by the database community [Navathe et al.
(1984); March and Rho (1995); Chu (1969); Cornell and Yu (1990); Alagiannis et al. (2014); Curino
et al. (2010); Jindal and Dittrich (2011); Jindal et al. (2013); LeFevre et al. (2014)].

Navathe et al. (1984), Cornell and Yu (1990), March and Rho (1995) & Chu (1969) have been
one the earliest studies in the filed of partitioning of databases. Navathe et al. (1984) proposed
algorithms and physical system designs to vertically partition databases to reorganize data in two
level memory hierarchy such that highly active data is stored in the fastest memory. This is done to
minimize the access to secondary storage, thereby improving performance. Chu (1969) developed
an optimization model for minimizing overall costs by constricting response time and capacity with
fixed number of copies of each file fragment. Cornell and Yu (1990) proposes a data allocation
strategy to optimize performance of distributed databases. Their solution has a major limitation
as they assume the network to be fully connected with each link having equal bandwidth. March
and Rho (1995) proposed a comprehensive genetic algorithm based model to allocate operations to
nodes taking into consideration replication and operation allocation costs.

All these previous studies by the database community were based on static workloads, which
restricts their use for constantly changing workloads [Galaktionov et al. (2016); Li and Patel (2014)].
Dynamically adaptive variations of these concepts have been explored thoroughly in the design of
modern datastores [Galaktionov et al. (2016); Li and Patel (2014); Curino et al. (2010)]. These
methods are used in online data partitioning such as O2P, H20 [Alagiannis et al. (2014)], etc., and
disk based analytical databases [Li and Patel (2014); He et al. (2011); Jindal et al. (2013)]. In the
Big Data ecosystem, most prominently the concepts of Navathe et al. (1984); Cornell and Yu (1990);
Chu (1969); March and Rho (1995) have laid strong footing for the data layout design on HDFS
[Li and Patel (2014); He et al. (2011); Jindal et al. (2011)]. Another use case has been in tuning
of data stores [Galaktionov et al. (2016); Guo et al. (2012)], such as a multi-store with HDFS and
RDMS together, where every parameter of the datastore is not known apriori. Integration of both
horizontal and vertical partitioning together [Agrawal et al. (2004)] have led to the design of modern

Column stores and NoSQL datastores, most popularly, Hbase [Harter et al. (2014)], WideTable [Li
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and Patel (2014)], RCFile [He et al. (2011)], etc. There has been a lot of prior work done on caching
and partitioning, which are the predecessors of multi-tier storage. We focus our attention towards
recent developments in multi-tier storage solutions which involve data management between storage
devices such as HDDs and SSDs.

Most of the literature in multi-tier storage solutions has concentrated on finding the temperature
of data, and migrating “hot data” form slower HDD tier to SSD tier and vice versa for “cold” data.
The effects of caching in enterprise platforms in negligible due to the data set size and skewed
workload characteristics [Harter et al. (2014); Krish et al. (2013)], therefore faster SCMs (SSDs)
are used as cache. Zhang et al. (2010) proposes an adaptable data migration model based on the
heat of data to determine the next hot data. Lin et al. (2011) migrates or allocates files to SSD based
on hotness (access frequency), randomness and profit-value based on read/write-intensiveness and
recency of file access. Chang et al. (2015) keeps blocks in SSD with highest hit frequency. Migration
is based on utility value associated with every block in SSD in last time slot based on read/write
counts, known as profit caching. Hybrid-disk Aware CFQ scheduling proposed is an extension of
CFQ in which the I/O’s to SSD are serviced immediately. Ye et al. (2015) proposes a time-decay
regional popularity replacement algorithm for blocks with high probability of being popular and
migrate them from HDD to SSD. Regions are adjacent blocks in HDD. Though multiple efficient
techniques have been proposed, in shared Big Data cloud deployments due to the highly skewed,
non-uniform and multiplexing workloads [Ibrahim et al. (2011)], prediction of utility value of blocks
for tiering based on heat of data might not be a viable option.

Our proposed solution BID-Hybrid, however, lies in the “initial tier placement” problem, in
which the goal is to decide which tier the data is to be written in-order get maximum performance
benefits. While BID-Hybrid works on the principle of making judicious, anticipated and dynamic
tier placement decision based on bulkiness of processes, non-bulky data is offloaded to SSD and
bulky in HDD. This serves multi-fold, first ensuring uninterrupted sequential data access on HDDs.

Secondly, preventing performance critical future interruptions in HDDs. These semantic blocks
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which are non-bulky are offloaded to SSDs have a high probability to appear in the same pattern
[Bhadkamkar et al. (2009); Ibrahim et al. (2011); Chen et al. (2011)].

In the existing literature tiering is based on randomness in I/0, and is defined as mere deviation
of LBA (logical block addresses). An application could be sequential but due to contention at the
request queue to submit requests may appear as random in such a case. This might thereby causes
unnecessary deportations to SSD in skewed workload characteristics. In BID-Hybrid, we take
care of such cases and define randomness for blocks based on profiling the processes and provide
decision metrics based on anticipation and I/O size, in-order to define the correct candidate for
tiering. Therefore, BID-Hybrid uses the notion of randomness of process characteristics to make
dynamic and judicious tier-placement decisions.

PASS involves high cost due to retiring SSDs (limited write/erase cycles) with lack of workload-
aware tiering, i.e. SSD is used as absorption layer, which wont be suitable for skewed workloads like
MapReduce. Iliadis et al. (2015) determines data-to-tier assignments for Data-Centers based on
cost-function (based on chunk size/request size, rate, volume of storage) to reduce mean response
time. It simulates the inter-arrivals as a M/G/1 single server queue and processing is done as per
chunk size. Kim et al. (2011) proposes a tool for improving capacity planning within cost-budgets
& performance guarantees during deviations from expected workloads. Krish et al. (2016) studies
HDFS characteristics to place intermediate data of MapReduce in SSD to improve performance
and cost-optimization. Many MapReduce workloads have large and sequential intermediate data
sets, SSDs could be a bottleneck.

Shi et al. (2012) computes optimal data file by creating a multi-choice 0/1 Knapsack problem to
reduce number of transfers between tiers for data allocation. I/O information from clients are used
to distinguish sequential and random. Random and hot objects are allocated to tiers according
to the Knapsack problem. In Liu et al. (2010), SSD is split into Read and Write cache. The I/O
operations are monitored in the OS Kernel. The Dispatcher module detects sequentiality from
the “request queue” by the number of continuous LBAs. The random blocks are recorded in a

table and data is cached in read cache of SSD. When a page is evicted from Page Cache, its LBA is
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checked in the table and if a hit is found, it caches data in read cache. Migration follows LFU, when
the utilization rate of read cache is 90%. Krish et al. (2014b) redesigns HDFS for a multi-tiered
hybrid storage based on tier characteristics and capacity. It logically groups all storage devices
in a tier across all nodes and manages them individually. It increases utilization of HPC storage
by forwarding greater number of I/Os to faster tiers and exploits tier information to decide where
to place replicas of a block. Islam et al. (2015) designs a hybrid storage for HPC including RAM
disks, SSDs, HDD and utilize Lustre F'S and HDFS. It deals with tri-replication of blocks ensuring
fault tolerance. The data placement decision is based on storage space available and migration

from layer to layer is based on the priority of usage.

2.1.3 Workload Specific Optimizations: Exploring Lineage

Most studies have focused on studying data center operations to consolidate the computing
needs and organize and optimize computing for multiple applications. Computing resources are
believed to be abundant, but without appropriate attention, they are mostly waiting for data and
wasting cycles [Mishra and Somani (2017); Bjgrling et al. (2013); Bhadkamkar et al. (2009); Choi
et al. (2017); Bu et al. (2010); Afrati and Ullman (2010)]. Moreover, for lineage based applications,
the impact is more severe due to data-dependency between tasks. Keeping all the data in memory
(as done in Spark) may not be a wise choice either. We believe that the focus needs to shift from
computing to data. What makes this shift relevant is the availability of oracle-like deterministic
workload and data center storage topology aware data management. Datum access from storage
and copying in memory is expensive. Therefore, we believe that studying data utilization patterns
and developing strategies to optimize computing paths are the greatest needs at the current time
[Zaharia et al. (2010)].

There have been efforts [Li et al. (2014); Zaharia et al. (2012)] to understand lineage for in-
memory computation for improving job recovery time in-case of fail-overs and performance in
Data Centers with nodes having large memory. Zaharia et al. (2012) forms distributed data-sets

for in-memory computations (production and computation in-memory), which inherently improves
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performance. Li et al. (2014) proposes an in-memory fault tolerant mechanism which leverages
lineage to recover lost outputs by re-executing the steps which formed the data-sets. In-memory
computations and storing of results in memory are infeasible for Big Data workloads as the working
sets are huge to fit in RAM, along-with the time-varying nature of applications for production and
consumption of data blocks [Harter et al. (2014)]. Issues such as ensuring reliability and cost-
effectiveness are other major challenges in such frameworks. Therefore, cost simulations in Harter
et al. (2014) that adding small SCM tier and efficient orchestrating data between tiers can lead to
enhanced performance than equivalent spending on RAM or disks. Multi-tier storage offers multiple
dimensions, such as device type, network connectivity, and replication management, which allows
to explore to explore the issues associated with data access differently.

Multiple solutions [Kakoulli and Herodotou (2017); Grund et al. (2010); Islam et al. (2016);
Krish et al. (2014b); Lee et al. (2016); Gunda et al. (2010); Olson et al. (2017); Zhang et al.
(2010); Mihailescu et al. (2012); Ananthanarayanan et al. (2012); Iliadis et al. (2015); Islam et al.
(2015); Grund et al. (2010)] have been proposed in literature to exploit multi-tier storage, but none
addresses the issues associated with lineage or chained jobs.

Islam et al. (2015) designs a heterogeneous storage engine for HPC including RAMdisks, SSDs
and HDDs, and Lustre FS to benefit HDFS. The data placement engine in Islam et al. (2015) deals
with tri-replication of blocks to ensure fault tolerance and the decisions of placement of replicas in
a tier is based on storage space available with a usage-priority based tier migration model. Krish
et al. (2014b) proposes a model with an intent to remove performance bottlenecks by placing every
block belonging to file in all tiers of storage.

In the following chapters, we discuss our host managed storage solutions, namely, BID-HDD, BID-

Hybrid, and LDM.
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CHAPTER 3. CONTENTION AVOIDANCE FOR DISK BASED BIG DATA
STORAGE

In this chapter, we discuss the details and impact of our work on managing I1/O contentions in
the operating system for disk based storage devices deployed in data centers experiencing Big Data
workloads.

The chapter is organized as follows. First, we discuss contentions and the associated issues in
Section 3.1. Section 3.2 provides a brief overview of the working of the I/O stack, HDD character-
istics and its inefficiencies in shared large data processing infrastructure. Section 3.3 lays down the
expectation from a block I/O scheduler in Big Data deployments as well as points out the issues
with the current Linux scheduling schemes. In Sections 3.5 and 3.6, we present our Contention
Management scheme i.e. block I/O scheduler, BID-HDD [Mishra et al. (2016)] followed by our
design of experiments and performance evaluation, respectively. Section 2.1.1 discussed in Chapter
2 provides an in-depth survey of related literature. We conclude the chapter in Section 3.7 with a

discussion on future work.

3.1 The Problem

Data Centers today cater to a wide diaspora of applications, with workloads varying from data
science batch and streaming applications to decoding genome sequences. Each application can have
different syntax and semantics, with varying I/O needs from storage. With highly sophisticated
and optimized data processing frameworks, such as Hadoop and Spark, applications are capable
of processing large amounts of data at the same time. Dedicating physical resources for every
application is not economically feasible [Krish et al. (2016)]. In cloud environments, with the aid of
server and storage virtualization, multiple processes contend for the same physical resource (namely,

compute, network and storage) [Kim et al. (2016)]. This causes contentions. In-order to meet their
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Service Level Agreements (SLAs), cloud providers need to ensure performance isolation gaurantees
for every application [Nanavati et al. (2015)].

With multi-core computing capabilities, CPUs have scaled to accommodate the needs of “Big
Data”, but storage still remains a bottleneck. The physical media characteristics and interface
technology are mostly blamed for storage being slow, but this is partially ¢rue. The full potential
of storage devices cannot be harnessed till all the layers of the I/O hierarchy function efficiently.
The performance of storage devices depend on the order in which the data is stored and accessed.
This order is multiplexed due to interferences from other contending applications. Therefore, in
large scale distributed systems (“cloud”), data management plays a vital role in processing and
storing petabytes of data among hundreds of thousands of storage devices [Zhou et al. (2016)]. The
problems associated due to the inefficiencies in data management get amplified in multi-tasking,
and shared Big Data environments.

Big Data applications use data processing frameworks such as Hadoop MapReduce, which access
storage in large data chunks (64/128 MB HDF'S blocks), therefore exhibiting evident sequentiality.
Due to contentions amongst concurrent I/O submitting processes and the working of the current
I/O schedulers, the inherent sequentiality of Big Data processes is lost. These processes may be
instances of the same application (Map, shuffle or reduce tasks) or belong to other applications.
The contentions result into unwanted phenomenons such as multiplexing and interleavings, thereby
breaking of large data accesses [Joo et al. (2017); Yi et al. (2017); Park et al. (2016)]. The increase
in latency of storage devices (HDDs) adversely affects overall system performance (CPU wait time
increase) [Bhadkamkar et al. (2009)].

Despite advanced optimizations applied across various layers along the odyssey of data access,
the I/O stack still remains volatile. The Linux OS (Host) block layer is the most critical part of
the I/O hierarchy as it orchestrates the I/O requests from different applications to the underlying
storage. The key to the performance of the block layer is the Block I/O scheduler, which is
responsible for dividing the I/O bandwidth amongst the contending processes as well as determines

the order of requests sent to storage device. Figure 3.1 shows the importance of the block layer.
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Figure 3.1: Networked Storage Architecture.

We observe that irrespective of the data-center storage architecture, i.e. SAN, NAS or DAS, the
final interaction with the physical media is in blocks (sectors in HDD, pages in SSD). The block
layer is employed to manage I/Os to the storage device. Hard Disk Drives (HDDs) form the
backbone of data center storage. The data access time in HDDs is majorly governed by disk arm
movements, which usually occurs when data is not accessed sequentially. Big Data applications
exhibit evident sequentiality but due to the contentions amongst other I/O submitting applications,
the 1/O accesses get multiplexed which leads to higher disk arm movements. BID schemes aim
to exploit the inherent I/O sequentiality of Big Data applications to improve the overall I/O
completion time by reducing the avoidable disk arm movements.

Unfortunately, despite its significance, the block layer, essentially the block I/O scheduler hasnt
evolved to meet the volume and contention resolution needs of data centers experiencing Big Data
workloads. We have designed and developed two Contention Avoidance Storage solutions in the
Linux block layer, collectively known as “BID: Bulk I/O Dispatch” [Mishra et al. (2016); Mishra

and Somani (2017)], specifically to suit multi-tenant, multi-tasking Big Data shared resource en-
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vironments. In the this chapter, we discuss our first solution, i.e. a dynamically adaptable Block
I/0 scheduling scheme BID-HDD, for disk based storage. Chapter 4 discusses our second solution,
BID-Hybrid for multi-tier storage deployments.

BID-HDD tries to recreate the sequentiality in I/O access in order to provide performance
isolation to each I/O submitting process. Through trace driven simulation based experiments
with cloud emulating MapReduce benchmarks, we show effectiveness of BID-HDD which results in
28% to 52% 1/0 time performance gain for all I/O requests than the best performing Linux disk
schedulers.

In the next section, we briefly describe the working of the I/O stack, HDD characteristics and

its inefficiencies in shared large data processing infrastructure

3.2 Background

In this section, we first briefly present the working of the Linux I/O stack in Section 3.2.1
followed by the discussion on the physical characteristics of Hard Disk Drives HDDs in Section
3.2.2. Section 3.2.3 and 3.3 discusses the I/O workload characteristics of Hadoop deployments and
the requirements from a I/O scheduler in such environments, respectively. Section 3.4, describes
the working of the current state-of-the-art Linux disk schedulers deployed in shared Big Data

infrastructure.

3.2.1 Linux I/O Stack

The I/0 stack of the data center architectures as shown in Figure 3.1, can fundamentally be
broadly broken into Applications, Host (OS) and Storage. The difference between each of these
solutions is in the layers of abstractions (storage virtualization) and the networking interconnects
(Fibre Channel, RCoE, RDMA, etc.) between the storage and host [Bjerling et al. (2013); Islam
et al. (2015); Bhadkamkar et al. (2009)]. Figure 3.2 is the simplistic representation of the Linux 1/O
stack [Bjorling et al. (2013); Malladi et al. (2016)]. In this section, we briefly present the working

of the Linux I/O stack, focusing on the OS block layer. The block layer mediates and orchestrates
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I/0 requests from multiple applications to the underlying storage simultaneously. The following

steps are taken to serve application’s I/O request:

Applications (Processes)
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<
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Figure 3.2: Architecture of Linux Kernel I/O Stack.

1. The Virtual File System VFS provides abstractions for applications (processes) to access

storage devices via system calls. The calls include a file descriptor and the location [Bjgrling

et al. (2013); Xu et al. (2015); Avanzini (2014)]. VFS locates and determines the storage

device as well as the file system hosting the data, starting from a relative location. VFES

provides an uniform interface to access multiple file systems [Vangoor et al. (2017)].

2. While reading or writing from a file, the VFS checks if the data is present in the memory or

page cache. If the data is not present, then a page fault occurs and the Mapping Layer is

initiated to locate the data in the block device.

www.manaraa.com



29

. Kernel uses the “Mapping layer” to map the logical locations provided by the application
(file descriptor) to the physical location in the respective block device. The Mapping Layer
figures out the number of disk blocks required to be accessed. It should be noted that a file
is stored in multiple blocks which may be distributed across multiple devices using logical
volumes and on different devices may or may not be physically contiguous in the media. We

assume that the logical volume on the physical media is sequential.

The Mapping Layer and VFS enables storage virtualization functionalities such as logical

volumes, heterogeneous storage pools or “tiers”, etc.

. After determining the physical locations of the blocks, the kernel uses the block layer to map
I/O calls from the “Mapping layer” to the I/O operations (data-structures known as block
I/0 (BIO)).

The 1/O Scheduler in the block layer initializes the data structures called “requests”, which
represent 1/O operations, to be sent to the device. I/O operations accessing non contiguous

disk blocks (sectors) are broken into several I/O operations each accessing a contiguous set

of blocks.

. “Request” structures are then staged in a linked-list called request queue. The request queue
allows I/O schedulers to sort, merge and coalesce the requests depending on the locations they
access. Appendix A describes the relationships between the block I/O kernel data-structures

used by the block layer to perform I/O operations.

. Depending on the I/O Scheduling policies, “requests” scheduled to be sent to the device are
dequeued from the “request queue” and enqueued to a structure known as “dispatch queue”.
I/O Scheduler maintains the dispatch queue and it’s size is determined by the block device.

Section 3.4 briefly discusses different schedulers currently employed in Linux block layer.

. The “device driver” dequeues “requests” from the “dispatch queue” via service routines, which
are then issued to the block device (HDDs, SSDs, etc.) using DMA (Direct Memory Access)

operations.
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The final interaction with the physical media is always in blocks (sectors in HDD, pages in SSD)
and storage performance depends on the way storage is accessed. The block layer employs the /0
Scheduler, which provides the opportunity to coalesce requests and determines the order (& size)
in which data is accessed from the block device. Therefore, the Block Layer is the most critical
part of the I/O hierarchy.

The block layer for disk based storage (HDDs) has still remained highly volatile as the mechan-
ical disks cannot support multiple hardware queues due to their physical constraints. Therefore,
HDDs can have multiple software queues but single Hardware queue. The objective function of
block layer for disk based storage is to optimize the request order from various applications in-order
to recreate sequentiality of disk access and manage the I/O bandwidth for every application. BID
schemes utilize multiple software queues in the block layer, but single hardware queue for delivering

Software Defined Storage solutions for disk based storage devices.

3.2.2 HDD characteristics

Disk based storage devices (Hard Disk Drives HDDs) are the back-bone of data center storage.
HDDs provide the perfect blend of cost and capacity as needed to accommodate the volume re-
quirement of Big Data. The main research focus for a long time has been in improving physical
media characteristics like increasing areal density of hard drives, read/write technology, etc. (for
ex: shingled magnetic recording (SMR), heat-assisted magnetic recording (HAMR)) [Aghayev et al.
(2017)].

The data in HDDs is organized as 512 byte (or 4KB emulated for newer drive technology)
blocks in circular disk tracks and the data access time depends on both the rotational latency of
disk platters and movement of read /write head mounted on disk arm. Therefore, sequential accesses
(adjacent I/O blocks in the physical media) are fast as they depend on the rotation of disk platter
(RPM of the disk) [Arpaci-Dusseau and Arpaci-Dusseau (2014)]. While random accesses are slow
as they require the disk head to move from the current location to another track, i.e. involves disk

arm movement which in turn is time consuming. Hence, the order in which the requests are sent
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to the device is important. Therefore, the serving sequence of requests governs the overall 1/0
performance due to mechanical movement of disk arm.

The block layer 1/O scheduler tries to sequentialize the requests to reduce both the number of
seeks as well as the disk head traversal to the desired track. The time in processing the requests
is important as they consume the I/O bandwidth of the device as well as increase the CPU wait
times. This creates blocking (in the case of reads) in which the CPU waits for the data and doesn’t
issue more I/Os as well as doesn’t do any meaningful work while waiting for the data [Bjgrling

et al. (2013); Bhadkamkar et al. (2009); Joo et al. (2017)].

3.2.3 Hadoop MapReduce: Working and Workload characteristics

Hadoop MapReduce [Dean and Ghemawat (2008); White (2012); Mishra et al. (2017)] is the
de-facto large data processing framework for Big Data. Hadoop is a multi-tasking system which
can process multiple data sets for multi-jobs in a multi-user environment at the same time [Islam
et al. (2015); Ibrahim et al. (2011)]. Hadoop uses a block-structured file system, known as Hadoop
Distributed File System (HDFS). HDF'S splits the stored files into fixed size (generally 64 MB/ 128
MB) file system blocks, known as chunks, which are usually tri-replicated across the storage nodes
for fault tolerance and performance [White (2012)].

Hadoop is designed in such a way that the processes access the data in chunks. When a process
opens a file, it reads/writes in multiples of these chunks. Enterprise Hadoop workloads have highly
skewed characteristics making the profiling tough with the “hot” data being really large [Harter
et al. (2014)]. Thus, the effects of file system caching is negligible in HDFS [Harter et al. (2014);
Krish et al. (2013)]. Most of the data access is done from the underlying disk (or solid state) based
storage devices. Therefore, a single chunk causes multiple page faults, which eventually would result
in creation and submission of thousands of I/O requests to the block layer for further processing
before dispatching them to the physical storage.

Each MapReduce application consists of multiple processes submitting I/Os concurrently, pos-

sibly in different interleaving stages, i.e. Map, Shuffle and Reduce, each having skewed 1/0 re-

www.manaraa.com



32

quirements [Ibrahim et al. (2011)]. Moreover, these applications run on multi-tenant infrastructure
which is shared by a wide diaspora of such applications, each having different syntax and semantics.
For Big Data multi-processing environments, although the requests from each concurrent process
results into large number of sequential disk accesses, they face contention at the storage interface
from other applications. These contentions are resolved by the OS Block Layer, more essentially the
I/O scheduler. The inherent sequential operations of applications becomes non-sequential due to
the working of the current disk I/O schedulers, which thereby result into unwanted phenomenons
like multiplexing and interleaving of requests [Yi et al. (2017); Joo et al. (2017); Ibrahim et al.
(2011); Krish et al. (2013)]. This also results in higher CPU wait/idle time as it has to wait for the
data [Bjerling et al. (2013); Bhadkamkar et al. (2009); Nanavati et al. (2015); Joo et al. (2017)].
In order to provide performance isolation to each process as well as improve system performance,
it is imperative to remove or avoid contentions.

Section 3.4 describes the working of the current state-of-the-art Linux disk schedulers deployed
in shared Big Data infrastructure. In the next section, we discuss the requirements of a block 1/0O

scheduler most suited for Hadoop deployments.

3.3 Requirements from block I/O scheduling in Big Data deployments

The key requirements from a block I/O scheduler in a multi-process shared Big Data environ-

ments, such as Hadoop MapReduce are as follows:

1. Capitalize on large 1/0 access: Data is accessed in large data chunks [White (2012)] (64/128
MB in HDFS), which have a high degree of sequentiality in the storage media. The I/O
scheduler should be able to capitalize on large I/O access and should not break these large

sequential requests.

2. Adaptiveness: Multiple CPUs (or applications) try to access the same storage media in a
shared infrastructure, which causes skewed workload patterns [Kim et al. (2016)]. Addition-

ally, each MapReduce task itself has varying & interleaving I/O characteristics in its Map,
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Reduce and Shuffle phases [Ibrahim et al. (2011)]. Therefore it is imperative for an I/O

scheduler to dynamically adapt to such skewed and changing 1/O patterns.

3. Performance Isolation: In-order to meet the Service Level Agreements (SLAs), it is highly
imperative to provide I/O performance isolation for each application [Kim et al. (2016); Park
et al. (2016)]. For ex: A single MapReduce application consists of multiple of tasks, each
consisting of multiple processes, each having different I/O requirements. Therefore, a 1/O
scheduler through process-level segregation should ensure I/O resource isolation to every I/0O

contending process.

4. Regular 1/O scheduler features: Reducing CPU wait/idle time by serving blocking I/Os
(reads) quickly; Avoid starvation of any requests; Improve sequentiality to reduce disk arm

movements.

3.4 Issues with current I/O schedulers

Since version 2.6.33, Linux [Yi et al. (2017); Kim et al. (2016); Ibrahim et al. (2011)] currently
employs 3 disk I/O Schedulers namely Noop, Deadline and Completely Fair Queuing CFQ.

As observed in Section 3.2.1, the main functionalities of the block I/O schedulers are as follows:

1. Lifecycle Management of the block I/O “requests” (which may consist of multiples of BIO
structures) in the “request queue”. Refer to Appendix A for details regarding the relationship

of Block I/O data-structures.

2. Moving requests from “request queue” to the “dispatch queue”. The dispatch queue is the

sequence of requests ready to be sent to the block device driver.

The following example highlights the issues with the current Linux I/O Schedulers. For sim-
plicity, we assume a Hard Disk Drive (HDD) with geometry of 1 platter, 100 sectors/track and 100
tracks/platter (see Figure 3.3). Consider 3 processes with process id’s (pid) A, B, C' submitting

I/0 requests to the disk block layer in the order shown in Table 3.1 (from top to bottom).
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Figure 3.3: Geometry of the HDD with 1 platter, 100 sectors/track and 100 tracks/platter.

Table 3.1: 1/0 request Submission Order to the Block Layer.

order request LBA transfer Track No. read/write time to ex-
size (cylinder) pire (ms)

1 B1 7125 40 71 w Exp#1

2 Al 305 24 3 T Exp#2

3 A2 340 24 3 r Exp#3

4 A3 370 24 3 r Exp#4

5 C1 1600 4 16 r Exp#5

6 B2 7165 40 71,72 w 50

7 B3 7205 40 72 w 53

8 A4 410 24 4 T 60

9 A5 440 24 4 r 65

10 A6 470 24 4 r 100

11 C2 1670 4 16 r 105

12 B4 7245 40 72 w 110

In the table,
Ay By, Cp: nth request of processes A, B, C submitted to the “request queue;”
LBA: starting logical block address of the sorted “request” structure;
transfer size: number of disk blocks required for data transfer;
Track No.: the track (or tracks) where the entire request spans;
read/write: type of operation read ‘r’ or write ‘w’ performed by the request;
time to expire: time left in milliseconds at system time ‘k’ for the request to expire
as per the deadline determined by the Deadline Scheduling Algorithm;

Exp#‘x’: Exp. denotes that the request has already expired and ‘x’ is the order
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in which it has expired.

We assume that process A and B submit large I/O requests (transfer size) in short time intervals,
while C' submits small I/O requests in long time intervals.
The working of the three scheduling schemes of the current Linux block I/O Schedulers for this

example are shown below:
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Figure 3.4: Working of Noop Scheduling Algorithm.

Noop: Noop is the simplest of the three scheduling algorithms. Figure 3.4 shows the scheduling
order for the requests. As we see that its simply merges adjacent requests in queue, but does not
perform any other operation (works on the principle of FIFO). The requests are served in the order
in which they are submitted by the applications.

Observation: Noop is suitable for those environments where the number of processes submitting
large I/O requests (A and B) concurrently is small. Noop can perform well in such a scenario

where-applications-themselves-submit large requests which have inherent sequentiality. For large
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number of applications contending for the same storage media, Noop would cause large number of
seeks due to multiplexing of requests from these processes. Adjacent requests (according to LBA)
which arrive interleaved at the block layer (For ex: requests C1 and C2), are not provided the
opportunity to coalesce and form sequences. Moreover, due to presence of requests from process C
in between requests from bulky processes A and B, there is additional sequentiality loss of these
bulky process. Also, if there are large number of processes like C' (i.e. data transfer/seek is low)

the disk I/O access time would increase significantly due to the FIFO nature of Noop.
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Figure 3.5: Working of Deadline Scheduling Algorithm.

Deadline Scheduler: The Deadline Scheduler tries to prevent starvation of requests. Each
request is assigned an expiration time (reads=500ms, writes=5000ms) [Yi et al. (2017); Ibrahim
et al. (2011)]. There are two kinds of queues: Sorted Queues, where requests are sorted by disk
access location and FIFO Queues, where requests are ordered according to deadline [Kim et al.
(2016); Schnberger (2015)]. Some implementation have just three queues: 2 FIFO queues and a

common Sorted Queue [Yi et al. (2017)]. For simplicity, we consider the former implementation
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with both FIFO and Sorted queues having separate Read and Write queues as shown in Figure
3.5. The requests in the sorted queues are processed in batches (fifo_batch). The deadline scheduler
keeps issuing request batches to the dispatch queue from the sorted queues unless the request at
the head of the Read/Write FIFO queue expires [Yi et al. (2017); Inc. (2015); lin ()].

Deadline Scheduler, despite its name, does not provide strict deadlines and actual I/O waiting
times can be much higher. The selection of batches of requests from the queues is based on expiry
of requests, otherwise requests are served from the sorted queues.

For the given example, we consider at system time ‘k’ the time to expire, i.e., the time left
for expiration of each request, as determined by the Deadline Scheduling Algorithm. Deadline
Scheduler tries to first dispatch those requests whose deadlines have already expired.

The “requests” from all the processes are staged in sorted (according to LBA) and FIFO (ac-
cording to time_to_expire), in respective read and write queues, as shown in Figure 3.5.

The selection of batches in which the requests are served as per Deadline Scheduling scheme is
as follows:
batchy : {B1} — writeFIFO;
batchs : {Al, A2, A3,C1} — readFIFO;
batchs : {A4, A5, A6} — readSORTED;
batchy : {B2, B3} — writeFIFO,;
batchs : {C2} — readSORTED;
batchg : {B4} — writeSORTED.

Hence, batch; is the selection order of dispatch of a batch of request. Also, the arrow “—” points
to the I/O queue from which the batch is selected.

Here we see that batchi has only 1 request ‘B1’ as its expiration is earlier than any other request
in the write FIFO queue as well as requests (batchs) in the read FIFO queue have already expired.
Once the expired requests are served, the scheduler picks batches from sorted queues (batchs).
While serving all these requests, B2 & B3 expire, hence they are scheduled (batchy). We observe

that batchs and batchg also contain just one request C2 and B4, respectively. This is due to all the
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requests already been scheduled from their respective batches. The switching of batches causes high
number of disk seeks. Moreover, when multiple processes of the same type submit I/O requests at
the same time, this also adds to increased latency.

Observation: For processes (such as A and B), which submit large I/O requests in short time
intervals, deadlines of the requests would expire at the same time. The FIFO queues would have
large number of requests whose deadlines have expired. Moreover, smaller processes such as C,
might still suffer from long waiting time because of a large number of pending requests from other
processes. With multiple processes submitting requests at the same time and expiration time being
close, deadline scheduler would cause deceptive idleness [Seelam et al. (2005)]. Deceptive idleness is
a condition when the scheduler would select requests from processes, leading to increased disk head
seeks to disjoint locations in the disk. Thereby, Deadline based I/O scheduling leads to reduced
throughput and result in large number of seeks [Yi et al. (2017); Kim et al. (2016)] for highly

sequential and multi-process workloads like Hadoop MapReduce.
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Figure 3.6: Working of Completely Fair Queuing (CFQ)
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Completely Fair Queuing (CFQ): CFQ is the default disk I/O scheduler in the current
Linux distribution [Kim et al. (2016); Park et al. (2016)]. It divides the available I/O bandwidth
among all the contending I/O request submitting processes [Yi et al. (2017)]. CFQ maintains
a location sorted queue for every process for synchronous (blocking) I/O requests and batches
together asynchronous (non-blocking) requests from all processes in a single queue. During its time
slice, a process submits requests to the dispatch queue which is governed by setting the parameter
quantum [Inc. (2015)]. CFQ is suitable for environments where all processes need equal and
periodic share of the block device like interactive applications.

In Figure 3.6, we see that CF(Q maintains per-process queues and requests from each process
(For ex: A, B, C).

The requests in the per-process request queue RQ),;q, where pid is the process id, are as follows:
RQ4 : {A1, A2, A3, A4, A5, AG};

RQp : {B1, B2, B3, B4};
RQc : {C1,C2};

CFQ inserts requests to the dispatch queue in a round robin fashion according to “quantum,”
which are then sorted in the dispatch queue. Thereby, in the first cycle (A1, A2), (B1, B2) and (C1)
are selected in round-robin from each process request queue RQ 4, RQp, and, RQ ¢, respectively.
Similarly {(A3, A4), (B3, B4), (C2)} & {(A5, A6)} in the second and third cycle, respectively. In

the “dispatch queue”, the requests are sorted according to their logical block address (LBA) values.

The final order of requests being served using CFQ is as follows:

{A1, A2, C1, B1, B2, A3, A4, C2, B3, B4, A5, A6}

Observation: From Figure 3.6, we observe that due to round-robin fashion of selection of requests,
the disk head movement follows the access pattern (accessing the same regions of the disk in a cyclic
pattern). CFQ in its quest of being fair to all processes, resulting into disk head movements leads

to-a-higher latency-and-inereased queue depth. One solution would be to increase the number of
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requests dispatched from a process queue, but this would lead to long latency for systems with a
large number of processes. Processes like A and B would consume a large portion of the disk 1/O
time due to their large data access requirements. CFQ is biased towards synchronous processes
(with each having their own process queue) and all other asynchronous processes in one queue.
However, application with large data access requirements and skewed workloads like MapReduce
would suffer high latency due to their specific and disjoint disk seeks. CFQ is undesirable for a
multi-process environment with diverse disk I/O characteristics within request queue contending
processes [Yi et al. (2017); Kim et al. (2016); Park et al. (2016)].

A fourth I/O Scheduling scheme, Anticipatory Scheduler has been discontinued from the Linux
kernel. It associates a fixed waiting time (6ms) for every synchronous (read) request [Yi et al.
(2017); Kim et al. (2016); Ibrahim et al. (2011)]. In MapReduce environments, this would lead to
increased CPU waiting time as well as lead to starvation of large number of requests.

Takeaway: In summary, due to contention amongst different processes submitting I/O to the stor-
age device and the working of the current I/O schedulers, the inherent sequentiality of MapReduce
processes are lost. They result into unwanted phenomenons such as interleavings and multiplexing
[Joo et al. (2017)] of requests sent to the device, thereby also adversely affecting system performance
(CPU wait time, etc) and increasing latency in disk based (HDDs) storage systems. We observe
that the existing Block I/0 schedulers do not support the set of requirements laid down in Section

3.3 and there is a clear need of new I/O scheduling scheme for such Big Data deployments.

v ¥ ¥
Al A2 A3 A4 A5 A6 CI C2 BI B2 B3 B4

Number of disk head movements = 4

Figure 3.7: Working of an Ideal Scheduling Algorithm.

Figure 3.7 shows a sequence of requests that would be dispatched by an “Ideal” scheduler

suitable for MapReduce type applications. We notice, that this scheduler has minimal disk head

movements as well as provides high throughput (maximizing sequentiality). Such a scheduling
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scheme needs to be intelligent and dynamically adaptable to changing I/O patterns. Further, such

a scheduler should take into consideration all the requirements laid out earlier in this section.

3.5 BID-HDD: Contention Avoiding I/O Scheduling for HDDs

HDDs form the backbone of data centers storage. The effects of caching is negligible in an
enterprise Big Data environment [Harter et al. (2014); Krish et al. (2013)] (refer to Section 3.2.3),
therefore large number of page faults occur, which in turn result in most of the data accesses from
the underlying storage. Hence, it is imperative to tune the data management software stack to
harness the complete potential of the physical media in highly skewed and multiplexing Big Data
deployments. As discussed in earlier sections, the block layer is the most performance critical
component to resolve disk I/O contentions along the odyssey of I/O path. Unfortunately, despite
its significance in orchestrating the I/O requests, the block layer essentially the I/0O Scheduler has
not evolved much to meet the needs of Big Data.

We have designed and developed “BID-HDD: Bulk I/O Dispatch for Hard Disk Drive” in the
Linux block layer specifically to suit multi-tenant, multi-tasking shared Big Data environments.
Essentially, we develop a Block I/O scheduling scheme BID-HDD for disk based storage to manage
I/O contentions. BID-HDD tries to recreate the sequentiality in I/O access in order to provide
performance isolation to each I/O submitting process.

BID-HDD is designed taking into consideration the requirements laid out earlier in Section 3.3.
BID as a whole is aimed to avoid contentions for storage I/Os following system constraints without
compromising the SLAs.

BID-HDD aims to avoid multiplexing of 1/O requests from different processes running concur-
rently. To achieve this, we segregate the I/O requests from each process into containers. The idea
is to introduce dynamically adaptable and need-based anticipation time for each process, i.e. time
to wait for adjoining I/O request. This allows coalescing of the bulky data accesses and avoid
starvation of any requests. Each process container has a wait timer, based on inter-arrival time of

requests and deadline associated with it. The expiry of either marks the container to be flushed in
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order to the storage device. This forms a pipeline of large data blocks from adjoining locations in
the disk.

In order to achieve the above, we modify the existing Host Block Layer by using the following
queues:
request queue RQ: Whenever a block I/O “request” is submitted by an application it is enqueued
in the request queue. Similar to the existing I/O schedulers, BID-HDD uses the request queue to: 1)
coalesce (merge) the requests accessing adjoint LBAs; 2) split the requests accessing non-contiguous

disk locations into multiple requests, each accessing contiguous locations.
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Figure 3.8: Working of BID-HDD
Per process staging queues SQ,: In order to segregate the I/O requests from each process,

BID uses separate containers known as staging queues for each process. BID-HDD groups the 1/0O

requests into staging queues on the basis of the process id (pid) they belong to. The staging queue
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for a process p is denoted by S@Q,. SQ,’s are not permanent queues and are only created whenever
the I/O requests of process p present in RQ) are ready to be staged and there is no existing S@,. The
staging queue for a process holds the requests which are ready to be sent to the dispatch queue of
the device (based on block device driver specifications.) The staging queue is important multi-fold:
1) for segregating I/0 requests from each process; 2) provide more coalescing opportunities under
the assumption that bulky processes, send a large number of requests to adjoining locations in the
physical media (For ex: 64 MB HDFS blocks;) 3) provides BID dynamic adaptability to changing
workload patterns. This is achieved through the following parameter associated with each staging

queue SQp.

Time stamp of the oldest request present in the queue, denoted by T'Syq(SQp).

Time stamp of the newest request present in the queue, denoted by T'Sye., (SQ)p).

Wait timer for next I/O request wait(SQ)p).

Flush deadline timer deadline(SQ)).

dispatch queue DQ: The dispatch queue D) holds the requests which are ready to be sent to the
block device. The order of requests sent to the dispatch queue is managed by the I/0O Scheduler,
while the device driver specifications decide the number of requests the dispatch queue can hold
at a time. The requests inside the dispatch queue are sorted according to logical block addressing
LBAs. The requests from the dispatch queue are dequeued according to the disk controller on the
physical device.

Figure 3.8 shows the working of BID-HDD with the help of the I/O submission order as in
Table 3.1. We now describe the working of BID! in terms of the path the I/O requests follow from
the generic block layer to the device driver:

Enqueuing I/0 request in request queue (R(Q): The block layer synchronizes the access to

shared exclusive resource, i.e. the request queue. The lock needs to be acquired by the process which

!BID and BID-HDD is used interchangeably throughout the chapter as BID-Hybrid also uses BID-HDD.
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ALGORITHM 1: Stage Requests

for every process p € P do

if SQ, not present then

Create SQp;

Create and set wait(SQ,) and deadline(SQ),) with default values;
if SQ, not marked for flushing then

Dequeue R, from RQ and enqueue in SQp;

Reset wait timer wait(SQy);

if R, contains a blocking 1/0 request then

if Remaining time in deadline(SQ,) > 500ms. then
Reset deadline timer deadline(SQ,) = 500ms;

inserts the block I/0O request structures to the request queue Bjgrling et al. (2013). Enqueuing in
the request queue depends on the free space of the “request queue” and a block I/O request can
only be inserted if the request queue RQ is not full. If the block I/O request can be merged with
any existing requests, it is merged otherwise it forms a separate request structure.

Dequeuing I/0 request from request queue (RQ) to staging queues (SQ): Let R denote
the set of requests currently present in “request queue”. Let P denote the set of processes which
have their requests currently enqueued in request queue. Let R, denote the set of I/O requests
out of R which belong to process p € P. The 1/O requests are dequeued from request queue and
enqueued in the corresponding staging queue as described in Algorithm 1.

Wait timer for Staging queues: As discussed in Sections 3.2.3 & 3.3, to ensure efficient resource
utilization as well as performance isolation of every 1/O contending process, it is critical that the
scheduler is dynamically adaptable to changing and skewed I/O patterns. BID gets its dynamic
adaptable capability by introducing per staging queue wait timer “wait(SQp)”. The wait timer
wait(SQ,) value for a staging queue SQ, is determined as follows: Whenever a set of requests
R, is enqueued to S@Q), the difference between the timestamp of newest request present in the
SQp denoted by T'Spew(SQp) and the time stamp of the oldest I/O request present in set R, is
computed. BID remembers k& most recent time difference values and uses their weighted mean as
the wait timer value. Whenever SQ),, is created, i.e. when the historic £ time difference values are

not available, the value of wait timers is set to a default value.
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ALGORITHM 2: Flush Requests: Pipelining

for every “staging queue” marked for flushing,
select SQp which was marked earliest. do
Dispatch all I/O requests from SQ, to DQ;
Delete SQp;
Delete wait(SQ,) and deadline(SQ,);

The main idea here is to exploit the inter-arrival time of batches of requests from a process to
profile the processes I/O characteristics. The wait timer, therefore provides more opportunity to
coalesce adjoining requests from a process for maintaining sequentiality as well as in the same time
avoid multiplexing from other processes.

It can be seen that the wait timer wait(5@Q),) is dynamic and adapts to the changing process I/O
characteristics. However, the wait timer is also deleted along with SQ, after flushing. Whenever
the wait timer wait(SQ)) for SQ) is expired, SQ, is marked for flushing.

Deadline timer for staging queue: Use of wait timer alone can cause starvation, as staging
queue SQ, which always gets enqueued with request(s) before wait(SQ),) expires will never be
flushed. Additionally, a non-bulky process might suffer due to large wait time. To avoid such
situations BID employs a deadline timer. The deadline timer deadline(SQ,) of a staging queue
S@)p indicates maximum allowable time the queue SQ), can exists before marked for flushing. The
deadline of a staged queue S@Q, depends on the type of requests in the staging queue S@Q,. If there
are only non-blocking I/Os (writes) in SQ), deadline(SQ)) is set initially to 5000ms. Whenever a
blocking I/O (read) request is enqueued to SQp, the deadline(SQ,) is set to 500ms if its current
value is more than 500ms. The reseting of deadline deadline(S@)) ensures that blocking I/Os do
not encounter higher delays. Whenever deadline(SQ),) expires, SQ, is marked for flushing. The
deadline timer also ensures that a process with high disk I/O (bulky) does not starve another
process with lighter disk I/O (non-bulky.)

Marking staging queue for Flushing: BID-HDD marks a staging queue for flushing whenever

any of the timers (wait(SQ)) or deadline(SQ),)) expires. Flushing denotes the process of sending
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the I/O requests currently enqueued in SQ, to the dispatch queue (DQ.) BID keeps track of the
order in which the staging queues are marked for flushing.

Flushing I/O requests from staging queues to dispatch queue: BID-HDD dequeues the
I/0O requests from staging queues and enqueues them to dispatch queue. As discussed in Algorithm
2, BID dispatches the requests from the earliest marked staging queue and follows the marking
sequence. The size of dispatch queue depends on the device driver specification and all the I/O
requests from staging queue may not get dispatched at once. BID ensures that a staging queue
is fully flushed before considering the next marked staging queue. This prevents multiplexing of
I/0 requests, thereby involves less movement of the disk arm to disjoint locations in the physical
media.

In BID-HDD, the efficient pipelining of large data blocks groups (as shown in Figure 3.8) from
adjoining locations in the disk leads to reduction in disk arm movements (leveraging sequentiality
performance) along with dynamic and need-based anticipation time ensures performance isolation
to each I/O contending processing following system constraints without compromising the SLAs.
BID-HDD is essentially a contention avoidance technique which can be modeled to cater different
objective functions (storage media type, performance characteristics, etc.).

Using the above for contention avoidance storage solution, BID-HDD is capable of delivering
higher performance. In the next section, through trace-driven simulation experiments using cloud
emulating Hadoop benchmarks, the performance of BID-HDD is evaluated and compared with the

current Linux scheduling schemes.

3.6 Experiments and Performance Evaluation

Through trace-driven simulations and in-house developed system simulators, we conducted ex-

periments for evaluating the performance of our scheme, i.e. BID-HDD.
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3.6.1 Testbed: Emulating Cloud Hadoop workloads and capturing block layer activ-
ities.

For our experiments, we select industry and academia wide used Hadoop benchmarks consider-
ing a wide diaspora of I/O workload characteristics, as specified in HiBench [Huang et al. (2010)]
& TPC Express Benchmark (TPCx-HS)- Hadoop suite [TPC(tm) (2016)]. These benchmarks
have been designed to recreate enterprise Hadoop cloud environments, stressing the hardware and
software resources (storage, network and compute) as observed in production environment. For
example, TeraSort is a popular compute and disk intensive MapReduce benchmark used for emu-
lating cloud environment workloads under heavy load with multiple chained MapReduce processes
running concurrently. Consider Table 3.2 for the set of Hadoop workloads with varying I/O char-
acteristics we used for the capturing the block I/O layer activities.

Our experimental testbed, see Figure 3.9, consist of our Hadoop cluster and Trace collection
nodes. We ran the benchmarks on our Hadoop cluster having Hadoop v2.6.5 with latest imple-
mentation of YARN resource negotiator. The cluster topology consists of one NameNode and 8
DataNodes, each with two 4-core AMD Operon 2354 processor, 8 GB Memory & 250 GB Serial
ATA (SATA) HDD.

I Network |

NameNode | ¢ ¢ o |Data Nodell PR Data Node, oo race Node|
Blktrace: tracing Remote bikirace

SATA HDD DigC el on disk of Data Node,

activity
e . .
Hadoop Nodes running HiBench Remote trace collection
MapReduce workloads node for purity of trace

Figure 3.9: Experimental Testbed: Hadoop cluster & capturing block layer 1/O activity using
blktrace.

We collect traces from the block layer of a disk in a DataNode in such a stage where the

applications have submitted block I/O structures to the block layer using the blktrace [Brunelle

(2007)] linux utility. Blktrace aids to captures the complete block layer I/O activities of a block

www.manaraa.com



48

device, right from I/O submission by process to completion of the request from the device. The
traces at this stage is important for our simulation based experiments to emulate the functioning of
the block layer before submission to the I/O scheduler. The traces include details such as process
id (pid), CPU core submitting I/0, logical block address (LBA), size (no. of 512 byte disk blocks),
data direction (read/write) information for each I/O request. Please note, we collected (stored)
the traces remotely on a different machine through the network and not stored in the same local
HDFS disk for maintaining the purity of the traces & minimize the effects of the SCSI bus [Brunelle

(2007); Riska et al. (2007); Chen et al. (2011)].

Table 3.2: Cloud Emulating Hadoop Benchmarks: I/O characteristics.

Workload I/0 Characteristics

Grep Mostly sequential reads with small writes.

Random Text Writer Mostly sequential writes, mixed with random writes and negligible reads.

Sort More reads than writes. Large sequential reads with random writes and
later sequential writes.

TeraSort Good mix of sequential and random reads/writes. More reads than writes.

Wordcount Mostly sequential reads, with large number of random writes followed by

random reads and small sequential writes.
Word Standard Deviation — Mostly sequential reads with small inter-phase writes, followed by small
writes in the end.

3.6.2 System Simulator

We have designed and developed a System Simulator using Python v2.7.3 to replicate the
working of the System level components (Host OS, Storage devices, etc.). We use the trace file
(as discussed in Section 3.6.1) for application I/O submission order. The Simulator has two major
modules: a)OS Simulator: Takes the order of I/O submissions and performs Linux Kernel block
layer functions (contains pluggable I/O Scheduler sub-module); and b) HDD Simulator: Takes
input from OS Simulator and returns performance metrics. The details of each of the components

(see Figure 3.10) is discussed below.

e OS Simulator: This module takes the collected workload I/O traces (Trace File) as input

and recreates the Kernel Block Layer functions after the stage from which the traces were
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Figure 3.10: Simulator Components.

collected (refer to Section 3.6.1). It performs Kernel block I/O operations such as: 1) making
block I/O (BIO) structure from traces; 2) Enqueuing BIO request structures to the “request
queue RQ” based on RQ limitations; 3) Pluggable 1/O Scheduling: merging, sorting, re-
ordering, staging, etc. as per the Scheduling scheme; 4) managing the I/O requests inflow
and outflow in the “dispatch queue” as per the device driver specifications; 5) dispatching
requests from dispatch queue to the block device. The I/O Scheduling sub-module is made
pluggable so that different scheduling schemes can be tested. Simulator provides the flexibility
to configure parameters like: data holding size of each BIO structure, request queue size,
dispatch queue size and block device driver parameters. To preserve the I/O characteristics
of the workloads, the requests are submitted based on the timestamp from the trace file to

the kernel block layer.

e HDD Simulator: This module takes the I/O requests from the dispatch queue of the

OS Block Simulator and based on the device type (HDD), return performance metrics like
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completion time depending on the current state of the block device. The module takes block
device configuration parameters as inputs (device driver) such as drive capacity, block device
type (HDD), etc. For HDDs, drive parameters include geometry, no. of disk heads, no. of
tracks (cylinders), sectors/track, rotations per minute (RPM), command processing time,
settle time, average seek time, rotational latency, cylinder switch time, track-to-adjacent
switch time, and head switch time. The HDD Simulator is CHS compliant for 48-bit logical
block addressing (LBA). The HDD simulator calculates the I/O access time (per I/O request)
by HDDs considering the current location of the disk arm and time needed to reach the desired
new location and access data size. The access time also takes into account minute details
such as command processing time, settle time, rotational latency, cylinder (track) switch time,
head switch time and average seek time [Bian et al. (2017); Ruemmler and Wilkes (1994);
Arpaci-Dusseau and Arpaci-Dusseau (2014)]. The configurable features gives us the ability

to test the schemes with different devices as well as drive architectures.

3.6.3 Performance Evaluation: Results and Discussions

We compare the effectiveness of our Contention Avoidance or block I/O Scheduling scheme,
BID-HDD, with the two best performing Linux kernel block 1/O schedulers used in the enterprise
deployments, namely, CFQ and Noop. CFQ performs well in almost all workloads in terms of 1/O
bandwidth fairness, while Noop is selected due to its superior performance in some MapReduce
workloads which have high degree of sequentiality [Yi et al. (2017); Ibrahim et al. (2011)]. Deadline
I/O Scheduling leads to reduced throughput and result in large number of seeks [Yi et al. (2017);
Kim et al. (2016)] for highly sequential and multi-process workloads like Hadoop MapReduce. As
the processes submit large number of I/Os in short interval of time, therefore, this leads to expiry
of most of the requests in the queue and it eventually acts as a FIFO queue (refer to Section 3.4).
Hence, we compare our solutions with CFQ and Noop.

For our experiments, we use the default parameters as shown in Table 3.3, which is based on

the storage devices and driver specifications.
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Table 3.3: Block Device Parameters in use for Performance Evaluation.

Block Device | Default Parameters

SATA HDD maximum “request” structure size = 512 KB;

request queue size = 256 BIO structures (128 reads, 128 writes);
max. size of each block I/O (BIO) structure = 128 x 4K pages;
1 page (bio vec) = 8 x 512-byte disk sectors (block);

access granularity (disk block sector size) = 512 bytes.
Specification based exactly as our 250 GB Hadoop cluster HDD.

Based on trace-driven simulations, we analyze the performance of different block level contention

avoidance schemes, i.e. BID-HDD, CFQ, and Noop.

3.6.3.1 Cumulative I/O Completion Time

Figure 3.11 represents the cumulative time taken (x-axis) by the block device to fulfill all the
I/0 requests? using different schemes. This graph shows the effectiveness of the scheduling schemes,
as the order in which the I/O requests are submitted to a block device plays a significant time in

deciding the time taken to fulfill them.
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Figure 3.11: Cumulative I/O Completion Time.

Figure 3.11 demonstrates that BID-HDD outperforms CFQ and Noop for all the workloads.
The savings in cumulative I/O completion time is maximum for WordStandardDeviation & Grep,
which have a relatively higher degree of sequentiality than others. BID-HDD requires only about

50% of the time taken by CFQ to serve the same set of I/O requests.

2An I/0 request can access data sectors located on adjoining disk cylinders (tracks).
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An interesting observation is that Noop outperforms CFQ, requiring 12% lesser time for work-
loads with higher inherent sequentiality in I/O accesses. The FIFO characteristics of Noop, tends
to preserve the sequentiality of processes, whereas CFQ in the advent of being fair to all contending
processes (in terms of I/O bandwidth), multiplexes the requests. This nature of CFQ is evident
from Figure 3.12, which shows the disk arm movements in terms of HDD track accesses (y-axis)
during the course of WordStandardDeviation workload. CFQ results in higher number of disk arm
movements between tracks (more vertical lines), thereby resulting in higher I/O completion time
due to round-robin switching of per-process queue.

Figure 3.12b & 3.12¢, show very similar track or I/O access pattern in Noop and BID-HDD,
respectively, yet there is a significant difference in the cumulative I/O access times. A careful
examination reveals that though the number of long distance track changes could be similar, the
number of short distance track changes (density of black lines) are much larger in Noop than in
BID-HDD. From Figure 3.12a and 3.12c, it is observed that BID reduces both the long strokes as
well as the short strokes as compared to CFQ. Due to staging capabilities and dynamic adaptability,
BID-HDD makes justified decisions, thereby reducing the number of head movements as well as
increasing the opportunity to coalesce requests together. This is evident from Figure 3.13, which
shows the magnified view of Figure 3.12b, 3.12a and 3.12¢ between timestamps t1 and ts.

We believe there is some kind of Amortization effect occurring due to bulkiness of 1/Os. We
notice from Figure 3.13, that Noop has rigorous disk h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>